ساعت های مکانیکی آبی از کجا آمدند؟

ساعت های مکانیکی آبی از کجا آمدند؟
دانِلد هیل در کتاب خود ساعت های آبی عربی می نویسد:
«رضوان (کسی که کتابی در سده های میانه در این باره نوشته و هیل سخن او را می آورد)
چنین ادامه می دهد : مردی به نام هُرمُز دوازده در برای ساعتهای روز ساخت و این دریچه ها در هر یک از دوازده ساعت روز و هر یک از دوازده ساعت شب می چرخیدند و او برای هر ساعت دو گوی درست کرده بود که در سر هر ساعت (یکی برای روز و یکی برای شب) فرو می افتادند و راهَک هایی و سَرَکی برای دو پرنده ساخته بود. پرنده ها از جای خود در نمی آمدند تنها سر ساعت سر خود را از جعبه بیرون می آوردند و این طرح سالهای دراز در سرزمین فارس ساخته می شد و از آنجا به یونان رفت تا اینکه طرح ساخت آن ها به دمشق رسید و به همین طرح در روزهای امپراطوری روم شرقی بیزانتین و پس از آن در روزهای بنی امیه ساخته می شد و هر کسی پس از دیگری از روی طرح هرمز به همین شکل که در بالا گفته شد

He continues “Then according to report a man called Hormuz invented the twelve doors for the hours of the day and these doors rotated in both of them [i.e. by day and by night] and he invented for every hour two balls which fell, and he added the channels and the heads of two birds and he designed it on this pattern [that is the same design as the clock built by Rizwan’s father] except that it was in a box from which nothing except the doors was visible. the birds did not change from their positions but only their beaks were protruding from the box. that design continued in the land of Fars for a long time and was transmitted from there to the land of the Greeks and its construction spread out in the land until it was transmitted to Damascus, where it was constructed up to the days of the Byzantines and after that the days of Banu Umayya according to what is entioned in the histories this clock attributed to Hormuz continued to be reproduced by one man after another on this pattern and it was in the shape that we described above.

دانلد هیل در ادامه می نویسد که به احتمال قوی این ایده ها از مصر و بابل به ایران رفته و از ایران به یونان و جا های دیگر

Arabic Water Clocks by Donald R Hill University of Aleppo Institute for the History of Arabic Science Aleppo Syria, 1981 pp. 12-13

تا کی شود قرین حقیقت مجاز من

ما یک ایران حقیقی داریم که جایش در دنیا مشخص است، شانزدهمین یا هفدهمین در جمعیت و در پهناوری است، و هفتاد و چندمین در درآمد سرانه،
و یک ایران مجازی داریم که تنها در ذهن برخی از مردم ایران است و هیچ. این ایران مجازی یک ابرقدرت منطقه ای و چه بسا جهانی است، با آمریک و اروپ نرد رقابت می بازد، و با از هند و چین برتر و بالاتر است، 
به قول یکی از دوستان فرهنگ پیچیده ای داریم که شامل « رفتار حقارت آمیزمان در برابر غربیها» است و در همین حال «توام با غرور و خودبرتر بینی نسبت به کشورهای همسایه. به عبارتی یک دو قطبی حقارت/تکبر است که هیچ یک هم با واقعیت نسبتی ندارد.» این رفتار پیچیده و گهگاه درک نشدنی ، از دید این نویسنده ، بیشتر برآمده از نیازها و انتظارهای ما و فاصله عظیم میان آنها و توانایی های ما برای برآوردن آن نیازها و انتظارهاست و این فاصله عظیم این پیامد را دارد که کارهای شگفتی آوری ازمان سر می زند.
در حالیکه کشورمان فقیر هست و یک ماشین حساب الکترونیکی بقالی هم نمی توانیم بسازیم، در دانشگاه شریف مان «روبات» می سازیم.
در حالیکه یک هواپیمای امن مسافربری نمیتوانیم بسازیم و جان مسافران میهن مان در خطر است، موشک می سازیم و چیزهایی که شبیه ماشین لباسشویی می ماند و بسیار کمتر از آن به کارمان می آید، به مدار پایین زمین می فرستیم
در حالیکه زبان فارسی در حال نابود شدن است و نزدیک به هیچ مفهوم پیچیده ای دانشی را نمیتوانیم به آن بیان کنیم و کتاب های ترجمه شده به دلیل نداشتن تک واژه های مناسب حجمشان دو برابر یا سه برابر کتاب اصلی می شود، به جِد به یادگیری زبان انگلیسی و فرانسه و اسپرانتو ! سرگرم هستیم.
و همه این ها از دید این نویسنده، از آن جا می آید، که چون درآمدمان از نفت می آید و برای بدست آوردن آن مجبور به اندیشیدن و نوآوری و فروش کالاهای صنعتی و کاربردی نیستیم، ناگزیر یک سره فراموش کرده ایم که ثروت از کجا می آید، بزرگی و مهتری از کجا می آید ، و فقر و کوچکی از کجا می آید ، ما جای خود را در دنیا به درستی ارزیابی نمی کنیم، همانطور که در بالا گفته شد در حالیکه ۱۶-۱۷ امین کشور از نظر جمعیت و مساحت هستیم(همسایه آلمان در رده بندی) از نظر درآمد سرانه ۷۵ امین هستیم(همسایه رومانی و کاستاریکا در رده بندی) (از ویکیپیدیا خود از صندوق جهانی پول)
در عین حال که خود را برتر از کشورهای همسایه می بینیم، از ترک میهن و دریوزگی در همین کشورهای همسایه برای بدست آوردن درآمد بیشتر روی گردان نیستیم در این حال باید دید که آیا برتربینی ما مجازی است قرین حقیقت یا تنها وهم و خیال

اگر به تاریخ نگاه کنیم در درازا و پهنای تاریخ نیک بنگریم، می بینیم که ایران از همسایگان خود که زمانی بخشی از ایران بودند، یک سر و گردن بالاتر بوده، ولی رفتار ما چون کسی هست، که یک زمانی در کلاس خود سرآمد بوده و بعد به خواب خرگوشی رفته ، و چشم هایش را که باز میکند، می بیند از آن همه سرداری و سروری چیزی نمانده و همه هم کلاسی هایش از او پیشی گرفته اند، هیچ،  دارند او را از کلاس هم بیرون کرده به ته کلاس دیگر می فرستند و بجای این که به ریشه های این وضع بیاندیشد به تمسخر و ناباوری پناه می اورد.

Haydari-Malayeri : The Persian-Toledan Astronomical Connection and the European Renaissance. (republished here for convenience from the pdf form)

Academia Europaea 19th Annual Conference
in cooperation with:
Sociedad Estatal de Conmemoraciones Culturales,
Ministerio de Cultura (Spain)
“The Dialogue of Three Cultures and our European Heritage”
(Toledo Crucible of the Culture and the Dawn of the Renaissance)
2 – 5 September 2007, Toledo, Spain
Chair, Organizing Committee: Prof. Manuel G. Velarde

The Persian-Toledan Astronomical Connection and the European Renaissance
M. Heydari-Malayeri
Paris Observatory

Summary


This paper aims at presenting a brief overview of astronomical exchanges between the Eastern and Western parts of the Islamic world from the 8th to 14th century. These cultural interactions were in fact vaster involving Persian, Indian, Greek, and Chinese traditions. I will particularly focus on some interesting relations between the Persian astronomical heritage and the Andalusian (Spanish) achievements in that period. After a brief introduction dealing mainly with a couple of terminological remarks, I will present a glimpse of the historical context in which Muslim science developed. In Section 3, the origins of Muslim astronomy will be briefly examined. Section 4 will be concerned with Khwârizmi, the Persian astronomer/mathematician who wrote the first major astronomical work in the Muslim world. His influence on later Andalusian astronomy will be looked into in Section 5. Andalusian astronomy flourished in the 11th century, as will be studied in Section 6. Among its major achievements were the Toledan Tables and the Alfonsine Tables, which will be presented in Section 7. The Tables had a major position in European astronomy until the advent of Copernicus in the 16th century. Since Ptolemy’s models were not satisfactory, Muslim astronomers tried to improve them, as we will see in Section 8. This Section also shows how Andalusian astronomers took part in this effort, which was necessary in the path to the Scientific Revolution. Finally, Section 9 presents the Spanish influence on the eve of the Renaissance.

1. Introduction


Before dealing with the main topics of this paper, it seems necessary to comment first on three widely used terms in this field: Arab/Arabic astronomy, Islamic astronomy, and zij.
Arab/Arabic is not meant as an ethnic but rather a linguistic term. In fact a large number of Non-Arab scholars, mainly Persians, Turks, and Spanish people, wrote their works in Arabic. Even so, many astronomical works were also produced in other languages of this civilization, especially Persian and in the later centuries Turkish. For example, the main zijs were originally written in Persian, a notable example being the Ulugh Beg’s (c. A.D. 1394-1449) zij, a landmark in precise observations before the Renaissance. We also note a disparity with respect to Western scholars who wrote in Latin. As far as these scholars are concerned, the Latin adjective is not specified (e.g., the expressions like “the Latin astronomer Copernicus”, “the Latin physicist Newton”, or “the Latin philosopher Leibnitz” are not used).
As for the term Islamic, it should be taken in the sense of the civilization rather than the religion, because much of the astronomy was secular. Moreover, many non-Muslims within the Islamic civilization contributed to this science and must be acknowledged. Once again, we find the above-mentioned disparity, since the term Christian, which refers also to a civilization, is not used either (e.g. Galileo and Newton are not usually referred to as “Christian scientists”).
Zij is the generic name applied to books in Arabic and Persian that tabulate parameters used for astronomical calculations of positions of the Sun, the Moon, and the five planets of antiquity. The word is derived from Middle Persian zig, variant zih, meaning “cord, string” (Modern Persian zeh “cord, string”), from Avestan jiiā- “bow-string”, cognate with Sanskrit jiyā- “bow-string”, Proto-Indo-European base *gwhi- “thread, tendon” (from which derive also Greek bios “bow”, Latin filum “thread”, Russian žica “thread”). The term zig originally referred to the threads in weaving, but because of the similarity between the rows and columns of astronomical tables and the parallel threads, it came to be used for an astronomical table, and subsequently a set of tables.

2. A glimpse of the historical background

Cultural developments in the course of history are not detached from underlying social/political events. In order to better understand the advent of Islamic science, it would be interesting to have a fast glimpse of the historical background.
The first Islamic state, established by the Umayyad dynasty (661-750), lasted for 89 years. There were social turmoil in various parts of the vast conquered territories and in particular Iranian resistance movements opposed the Arab domination, especially since the Umayyads considered non-Arabs as mawali, people of lowly status.
The Umayyads were overthrown by the leader of a revolutionary movement Abu Moslem Khorâsâni (Persian name Behzâdân), who enthroned Abu al-Abbâs as-Saffâh, a member of the prophet’s lineage. This was the beginning of the Abbasid dynasty (750-1258), which lasted over five centuries, although Saffâh himself reigned for only four years.
The only Umayyad survivor, Abd ar-Rahmân I, escaped to Andalusia where he established himself as an independent Emir (756-788). More than a century later one of his successors, Abd ar-Rahmân III (912-961), assumed the title of Caliph, establishing Cordoba as a rival to the Abbasid capital.
The Abbasid era was substantially influenced by the Persian culture and tradition of government. A new position, that of vizier (Arabic from Middle Persian vicīr “decree, decision”, from vicīrītan “to decide, to judge, to distinguish”; vicīrtār “judge, arbitrator, decider”), was created and many Abbasid caliphs were eventually relegated to a more ceremonial role than under the Umayyads. Several prominent viziers, serving Hârun ar-
Rashid (786-809) and his son al-Ma’mun (813-833), were members of the Persian Barmakid family of Buddhist faith. Moreover, al-Ma’mun’s mother was Iranian, and he himself had grown up in Khorâsân, the Eastern province of Iran.

During the second caliph al-Mansur (754-775) the capital was moved from Damascus to Baghdad, not far from Ctesiphon, the ancient capital of Iranian Sassanids. The designers hired by al-Mansur to lay the city’s plan were two Persians: Naubakht, a former Zoroastrian, and Mâshâ’allah, a Jew from Khorâsân. The two men also determined an astrologically auspicious date for the foundation of the city: 30 July 762.
It is also notable that the city name Baghdad is Persian, meaning “god-given” or “God’s gift”, from bagh “god, lord” + dâd “given”. The first component derives from Old Persian baga-, Avestan baγa- “lord, divider” (from bag- “to allot, share”), cognate with Sanskrit bhága- “part, portion”, Proto-Indo-European base *bhag- “to divide”; cf. Slavic/Russian bog “god”, Greek phagein “to eat” (originally “to have a share of food”). The second component dâd, from dâdan “to give”, Old Persian/Avestan dā- “to give, grant”, Proto-Indo-European base *do- “to give”; cf. Sanskrit dadáti “he gives”, Greek didonai “to give”, Latin datum “given”, Russian dat’ “to give”.
The reign of Hârun ar-Rashid and his successors fostered an age of intellectual activities. A cultural center, the House of Wisdom (Bait al-Hikmah), was set up, which was reminiscent of the Persian Sassanid academy of Gundishapur. An intense translation activity was undertaken and all sorts of books were translated from Middle Persian, Sanskrit, Syriac, and Greek into Arabic. In just a few decades the major scientific works of antiquity, including those of Galen, Aristotle, Euclid, Ptolemy, Archemides, and Apollonius, were translated into Arabic. The main translators were Hunayn ibn Ishâq (c. 809-873), a Nestorian Christian with an excellent command of Greek, and Thâbit ibn Qurra (c. 836-901), a Helenized pagan from Harran, a town in northern Mesopotamia (today Turkey), that was the center of a cult of “star worshippers”.
The paper needed for books was abundant, since Muslims had learned the techniques of paper making from the Chinese. In fact the Chinese prisoners of war captured in the battle of Talas (731) were ordered to produce paper in Samarkand and by the year 794 a paper mill was installed in Baghdad.

3. Origins of Muslim astronomy

At the advent of Islam Arabs did not have an elaborated/documented astronomy. The first astronomical documents translated into Arabic were of Indian and Persian origins. These translations set the basis for the first Muslim astronomical works. Greek astronomy, represented by Ptolemy, was introduced later, but it gained a fully dominant position owing to its predictive capacity. Here are the main founding sources:
The Persian work was Zij-e shâh or Zij-e shahryâr, originally composed for the Sassanid emperor Khosrow I (Anushirwân) about the year 550. It was translated into Arabic by Abu al-Hasan al-Tamimi and commented on by Abu Ma’shar (Albumasar) of Balkh. It became the basis for example for the work of the previously mentioned astronomers Naubakht and Masha’allah. Zij-e shâh contained some elements of Indian and Greek traditions. It also had its specific Persian particularities, mainly the basic year for the tables, which was the coronation date of the last Sassanid emperor Yazdegerd III (16 June 632), and the Solar year based on Nowruz, or spring equinox. The Yazdegerd III’s era was in use in Muslim astronomy during several centuries, before being replaced with the Hijra. As an interesting particularity of the Zij-e Shâh, the day started from midnight.
As to the Indian sources, several works have been mentioned in early Muslim astronomy, the main one Siddhānta (Sanskrit meaning “established end, final aim, doctrine, concept”) attributed to Brahmagupta (598-670). This work was brought to Baghdad sometime around 770 by an Indian political delegation, which had an astronomer named Kanka. The book was translated into Arabic by al-Fazâri and Ya’qub ibn Târiq, who were assisted by the Indian astronomer. The Sanskrit term was later corrupted to Sindhind in Arabic.
The Greek source was Ptolemy’s Almagest, dating from about A.D. 150. The Ptolemy’s Mathematike Syntaxis “Mathematical Compilation”, in later antiquity known informally as Megale Syntaxis or Megiste Syntaxis “The Great Compilation”, was translated from Greek into Arabic in the 9th century during the translation campaign launched by al-Ma’mun. It was translated several times, during which the title word Megiste was transformed into al-majisti. The earliest translators were the above-mentioned Hunayn ibn Ishâq and Thâbit ibn Qurra. By this time the work was lost in Europe. 

  The Persian astronomer Ahmad Farghâni (Alfraganus) presented a thorough descriptive summary of Almagest in his textbook Jawâmi’, known as Elements, written between 833 and 857. It was translated into Latin in the 12th century and was widely studied in Europe until the time of Regiomontanus (1436-1476). Farghâni also composed a very important treatise on the astrolabe around 856. Although the astrolabe was a Greek invention, the earliest dated instrument that has been preserved comes from the Islamic period. The only extant ancient treatise on the astrolabe is due to Johannes Philoponos, written in the first part of the 6th century.
The first Muslim astronomer who based his work principally on Ptolemy was al-Battâni (c. 853-929, born in Harran), who made his observations at al-Raqqa in Syria. Ptolemy’s work re-entered Europe from its Arabic versions with the transformed name Almagest in the medieval Latin translations.

4. Khwârizmi’s zij

Zij of Sindhind, written about 820 by Khwârizmi, was the first major astronomical work in the Muslim world. It was mainly based on Indian/Persian astronomy. Interestingly, Khwârizmi’s zij had its greatest long-term influence in Muslim Spain and Western Europe through the incorporation of some of its material in the Toledan Tables.
Abu Ja’far Muhammad ibn Musâ Khwârizmi (c. 780- c. 850) was a key figure in the history of algebra, an astronomer and geographer. The epithet Khwârizmi indicates that he or his forebears came from the Persian region of Khwârizm, the present-day Khiva in Uzbakistan. The historian Tabari (c. 838-923) gives him the additional epithet Majusi (related to magus), meaning Zoroastrian. This would have been possible at that time for a man of Persian origin. However, the preface of his Algebra (if effectively written by himself) shows him a pious Muslim. Anyhow, Tabari’s designation could mean also that his ancestors, and perhaps himself in his youth, had been Zoroastrian.
Zij of Sindhind was in particular based on the Iranian solar year with the starting era that of Yazdegerd III, as previously indicated. The Sun, the Moon, and each of the five planets known in antiquity had a table of mean motion and a table of equations (variations with respect to mean values). In addition, there were tables for computing eclipses, solar declination and right ascension, and various trigonometric tables. The form of a set of tables closely resembled that made standard by Ptolemy. But most of the basic parameters in the Zij (the mean motions, the mean positions at epoch, positions of apogee and the node) were derived from Indian astronomy. The maximum equations were taken from Zij of Shâh. The fundamental meridian was that of Arin, lying 70° east of Baghdad. Arin was a corruption of Ujjayni (present-day Ujjain), a city situated in central India, which was the “Greenwich” of the ancient Indian astronomy.
The original Arabic version is lost. A Latin translation exists carried out by the English scholar Adelard of Bath (c. 1080-1152) in the early 12th century. This translation was made not from the original, but from a revision executed by a Spanish astronomer, al-Majriti (c. 950- c. 1007).
The Zij continued to be used in classrooms and commented on even after al-Battâni, the aforementioned Mesopotamian astronomer produced his great work (Zij al-Sâbi), based principally on the Almagest and his own observations. Battâni is considered as the first Muslim astronomer to carry out new, systematic observations since the time of Ptolemy.
Khwârizmi is also recognized for his book on algebra: al-kitâb al-mukhtasar fi hisâb al-jabr w’al-muqâbala “the Compendious Book on Calculation by Completion and Balancing”. The term algebra in the European languages derives from al-jabr “completion, restoration” used by Khwârizmi. It should be underlined that at the early days of Algebra mathematical symbols were not used and one had to resort to phrases instead.
He is also remembered for being at the origin of the transfer of Hindu numerals (commonly called Arabic numerals) to Europe. Likewise, the term algorithm derives from his name, from French algorithme, refashioned under mistaken connection with Greek arithmos “number”, from Old French algorisme, from Middle Latin algorismus “the Arabic system of arithmetical notation”, a distorted transliteration of al-Khwârizmi.
Judging from what has remained from Khwârizmi, his importance is mainly due to the fact that he was the first to scholarly introduce the Indian/Persian traditions in astronomy/mathematics into the Muslim world.

5. Khwârizmi’s influence on Andalusian astronomy

Abd ar-Rahman II, the Umayyad Emir of Cordoba (822-852), was an amateur of books on philosophy, medicine, and music. He also loved astrology and his trustworthy astrologer
occupied a high rank in the court. It is possible that his liking for astrology stemmed from two notable astronomical events. The almost total solar eclipse of 17 September 833 drove the striken mob to the Cordoba’s grand mosque to carry out the ritual fright prayer. The other event was an intense meteor shower between 2 April and 18 May 839. It was during Abd ar-Rahman II’s reign that a version of Khwârizmi’s zij was introduced.
The real development of the Andalusian science took place in the second half of the 10th century. The first prominent Andalusian astronomer was Maslama ibn Ahmad al-Majriti (c. 950- c. 1007) of Madrid. He is particularly renowned for his version of Khwârizmi’s zij, in which he changed the chronology from the Persian epoch (as explained before) to the Muslim Hijri calendar. Further, Majriti transferred the standard meridian from Arin (explained earlier) to Cordoba. Majriti’s version of the Zij was translated into Latin by Adelard of Bath and was commented upon by Ibn al-Muthannâ, a work being extant in a Hebrew version. It seems moreover that Majriti’s work improved the calculation methods of Khwârizmi.
Although Andalusian astronomers knew Ptolemy’s work at least from the 10th century, they never fully abandoned the Sindhind tradition. Even about a century after Majriti, the Zij of Jayyân, set up by Ibn Mu’âdh al-Jayyani (d. 1093), was an adaptation of Khwârizmi’s zij to the coordinates of the city of Jaén in south-central Spain.

6. Flourishing of Andalusian astronomy

 

Andalusian astronomy flourished in the 11th century with Abu Ishâq Ibrâhim an-Naqqâsh (d. 1100), surnamed az-Zarqâli (Spanish transcription Azarquiel), from zarqâ’ (“blue”; “the blue-eyed one”). He was the first in the history of astronomy to unambiguously state the proper motion of the solar apogee with respect to stars and distinguish it from the precession of the equinoxes. The solar apogee was the farthest distance of the Sun from the Earth, when the Sun had its smallest apparent size. According to Zarqâli’s observations, the motion of the solar apogee amounted to 12″.04 per year. Resulting from 25 years of solar observations, first at Toledo and then at Cordoba, this measurement is highly remarkable compared to modern observations, which yield a displacement of 11″.6 annually. Today we know that the motion of the solar apogee results from the rotation of the line of apsides, or major axis, of the Earth’s orbit due to gravitational perturbation by other planets.
Zarqâli’s great manual skill allowed him to construct precision instruments for astronomical use. Perhaps inspired by the Toledan astronomer Ali ibn Khalaf, he constructed a “universal astrolabe” that could be used at any latitude. This innovation by Andalusian astronomers removed the inconvenience of having to change the plate (safiha) for each latitude. He also built the water clocks of Toledo, which were capable of determining the hours of the day and night and indicating the days of the lunar month. The clocks were in use until 1133, when Hamis ibn Zabara (during Alfonso VII) tried to discover how they worked; they were dismounted but could not be reassembled.
Zarqâli’s results had far-reaching consequences. Up till now Andalusian astronomy was subject to the pre-eminence of Eastern astronomy. Zaqâli starts a new period in which the Andalusian astronomers confirm the excellence of their research. The achievements of the 11th century Andalusian astronomers were transmitted and praised in the Middle East, announcing the beginning of a historical shift in the geographical focus.
It would be interesting to recall other notable features of Zarqâli’s epoch in a broader scope. Zarqâli was contemporary with the Persian mathematician, astronomer, and poet Omar Khayyâm (1048-1131). He was the first in the history of mathematics to undertake a systematic study and classifiaction of equations of degree ≤ 3 and to elaborate a geometrical solution for them. He is also known for his outstanding reform of the Iranian solar calendar, and his poems (rubaiyat). Interestingly, when Zarqâli was 25 years old one of the rarest astronomical events happened: the explosion of the famous supernova. On July 4, 1054, Chinese astronomers noted a “guest star” in the constellation Taurus. This star became about four times brighter than Venus in its brightest light, or about mag –6; it was visible in daylight for 23 days and in the night sky for 653 days. It is unlikely that Muslim astronomers did not see this phenomenon, but the fact that they did not care about this extraordinary event suggests that they were exclusively concerned with planetary motions.

Zarqâli is above all renowned for his contribution to the Toledan Tables which were probably compiled after 1068. This work, which represents the first original development of Andalusian astronomy, was extremely influential in Europe for three centuries until the advent of the Alfonsine Tables. It was adapted to local meridians almost all-over Europe (e.g. Pisa, London, Toulouse, Paris, Marseille) until the 13th century. The fact that a large number of copies were made of the Toledan Tables in the 14th and even 15th century implies that they were in use even after the Alfonsine Tables were introduced.
The main sources for the bulk of the table collections were those of Khwârizmi (mainly planetary latitudes), Battâni (planetary equations), and Ptolemy. In fact the oldest version of the Toledan Tables was mainly modeled on Khwârizmi’s Sindhind, but had admixture from Battâni. In addition, the oldest versions of the Toledan Tables preserve some tables of Khwârizmi that are rare or absent elsewhere.
The Toledan Tables also incorporated the thory of trepidation attributed to Thâbit ibn Qurra (c. 830-901). Trepidation was a spurious oscillation of the equinoxes thought to have a period of about 7000 years. In order to explain trepidation, Thâbit was said to have added a new sphere to the eight Ptolemaic spheres beyond the sphere of fixed stars. However, Al-Battâni rejected trepidation. In fact trepidation dominated the medieval astronomy. The original Arabic version of the Toledan Tables has been lost, but two Latin versions have survived, one by Gerard of Cremona (12th century) and one by an unknown author.
The Alfonsine Tables were drawn up in Toledo to correct the anomalies in the Toledan Tables, which they rapidly superceded sometime after 1320. Alfonso X, el sabio, king of Castile and Léon from 1252 to 1284, encouraged his astronomers and translators to prepare a major corpus of astronomical text in Castilian. The starting point of the Alfonsine Tables is January 1, 1252, the year of king’s coronation (1 June). The original Spanish version of the tables is lost, but a set of canons (introductory instructions) for planetary tables are extant. They are written by Isaac ben Sid and Judah ben Moses ha-Cohen, two of the most active collaborators of Alfonso X. The Alfonsine Tables were the most widely used astronomical tables in the Middle Ages and had an enormous impact on the development of European astronomy from the 13th to 16th century. They were replaced by Erasmus Reinhold’s Prutenic Tables, based on Copernican models, that were first published in 1551.
The Latin version of the Alfonsine Tables first appeared in Paris around 1320, where a revision was undertaken by John of Lignères and John of Murs, accompanied by a number of canons for their use written by John of Saxony. There is a controversy as to the exact relationship of these tables with the work commissioned by the Spanish king. Surprisingly, the earliest evidence of their use in Spain dates back to about 1460 in Salamanca when a Polish astronomer, Nicholaus Polonius, arrived and brought them with him. It is quite possible that the astronomers of the early 14th century working in Paris did a fine job in adapting previous astronomical material. However, if they created something quite new, why did they keep calling it Alfonsine Tables? The fact that the authors of the Parisian tables did not choose a new title for their work suggests that they did not consider it to be fundamentally different from the original Alfonsine Tables. In 1483 the Parisian Alfonsine Tables were printed in Venice for the first time, followed shortly afterwards by other editions, all of them by printers in that city.

8. Andalusian criticism of Ptolemy


Ptolemy’s Almagest, with its 13 chapters, dominated medieval astronomy. Notwithstanding, Ptolemy’s model was an inadequate representation of planetary motions. As an extreme example, according to Ptolemy’s model for the Moon, our satellite should appear to be almost twice as large when it is full than it is at quadrature, which is an absurdity since it is not seen as such.
The Muslim scholars did not follow Ptolemy blindly but disagreed on a number of points. For instance, the Egyptian Ibn al-Haytham (965-1040), the greatest authority on optics in the Middle Ages, wrote a treatise, Al-shukuk ‘alâ Batlamyus (Doubts about Ptolemy), criticizing the Ptolemaic system for its complexity and incompatibility with the Aristotelian physics. Similarly, the Persian polymath Abu Rayhân Biruni (973-1048), author of Qânun al-Mas’udi, considered as the most important Muslim astronomical text, rejected Ptolemy’s opinion about the immobility of the solar apogee on the basis of many astronomical observations. Mostly, the criticisms of Ptolemy were mainly philosophically motivated. Aristotle was a great authority who dominated every field of knowledge, including physics, whereas Ptolemy did not have such a standing. The objections had three main reasons:
1) In the Aristotelian cosmology the Earth was situated at the center of the Universe. In contrast, for Ptolemy the Earth did not occupy the central place. The main sphere (orb), called deferent, was centered on a point halfway between the Earth and another point invented by Ptolemy himself, termed equant. This point was meant to bring Ptolemy’s planetary theory closer to observations. The epicycle rotated on the deferent with uniform motion, not with respect to the Earth, nor around the center of the deferent, but with respect to the off-center point equant. However, this does not work since one might think in terms of a sphere moving at a uniform speed around an axis that does not pass through its center.
2) Aristotle believed that circular motion with uniform speed was the natural property of celestial objects. The equant point introduced by Ptolemy caused the epicycle center to move with variable speed on the deferent circle.
9
3) The Ptolemaic epicycles and deferents were abstract, geometrical concepts, while in the Aristotelian cosmology the spheres were physical entities to which celestial bodies were attached.
In Andalusia, after Zarqâli the Ptolemaic model was much debated and its criticism gained momentum, mainly by philosophers. Ibn Rushd (Averroes, 1126-1198) and Ibn Bâjja
observed spots on the solar disk which they ascribed to the transits of Mercury and Venus. The idea of spots on the Sun was not admissible since Aristotle’s doctrine maintained that the heavens were incorruptible. Anyhow, putting forward the transit argument meant a criticism of Ptolemy, since he had argued that the lines of sight joining these planets to Earth never cross the Sun. These transits were a matter of debate among Andalusian thinkers. Further, Averroes rejected Ptolemy’s eccentric deferents and argued for a strictly concentric model of the Universe.
The 12th century Andalusian astronomers were divided between those who followed Zarqâli’s tradition, like Abu as-Salt, Ibn al-Kammâd (c. 1100), Ibn al-Haïm (c. 1205), and Jâber ibn Aflah (1100-1150) and tried to improve the “orthodox” astronomy, and those who were critical of Ptolemy. Ibn Rushd, Maïmonid, Ibn Bâjja, and Ibn Tufayl dreamed of an astronomy that would be in agreement with the Aristotelian physics, based on three kinds of motions: centrifugal, centripetal, and circular about a center that should be identified with Earth.
Al-Bitruji (Alpetragius, d. c. 1190) is the only Aristotelian philosopher to formulate an embryo of a strictly geocentric system. However, there was nothing really new in this since Democritus had allegedly stated similar ideas. Anyhow, Bitruji’s system was quite qualitative and he was unable to calculate the planetary tables with his model. For example, in Bitruji’s system Saturn could on occasion deviate from the ecliptic by as much as 26 degrees (instead of the required 3 degrees).
The most significant improvement of Ptolemy’s model to comply with absolute circularity was obtained in the 13th century by the Persian astronomer, mathematician, founder of the Marâgha observatory, and political figure Nasireddin Tusi (1201-1274). He devised a theorem on the combination of regular circular motions (now called the Tusi couple) that generated linear motion. A circle of radius R rotates inside a circle of radius 2R. The smaller circle rotates at twice the speed of the larger one and in opposite direction. The initial tangent point will travel in linear motion back and forth along the diameter of the larger circle. Today we know that the linear motion is a particular case of the family of hypocycloid curves. A change in relative sizes and speeds of the circles will produce multi-cusped curves.
This innovation allowed Tusi to account for non-uniform motions of the planets. It explained how the epicycle could move uniformly around the equant, and still oscillate back and forth toward the center of the deferent. In fact the Tusi couple was the only new mathematical model for planetary motions from the time of Ptolemy. Tusi used the theorem successfully in his Tadhkira to reconstruct models for the Moon and the upper planets. However, as he himself points out, he could not generalize the solution to Mercury. Tusi’s work was elaborated by other astronomers at the Maragha observatory, Mu’ayyad ad-Din al-‘Urdi (d. 1266) and Qutbeddin Shirâzi (d. 1311). Finally, following Tusi’s work, a completely concentric rearrangement of the planetary mechanisms was achieved by the Syrian
astronomer Ibn ash-Shâtir (1304-1376), who succeeded in eliminating not only the equant but also certain other objectionable circles from Ptolemy’s models and thus placing the Earth at the center of the Universe.

9. The eve of Scientific Revolution

On the eve of the Renaissance Spain was the major interface between Muslim science and the rising European scientific activities. Many of the treatises written by Muslim scholars reached Europe via Spain, where they were translated into Latin. The astrolabe was re-introduced in the West through Spain in the 11th century. In about 1390 the English poet Geoffrey Chaucer (c. 1340-1400), inspired by such translations, wrote an essay of the astrolabe. It is possible that scientific activity centered at Oxford at the time contributed to the surge of interest in the device. On the astrolabes of that period one finds typical sets of Arabic star names written in Gothic Latin letters, for example Vega, Altair, Rigel, Alpheratz, and so on. Thus, as a result of the astrolabe tradition of Andalusian astronomy, most navigational stars today have Arabic names.
The Muslim attempts to criticize Ptolemy could not spare the Ptolemaic model. Nonetheless, they were necessary steps in the path leading to the Scientific Revolution. They certainly helped Nicolaus Copernicus (1473-1543) to come up with his revolutionary heliocentric model, more especially since he included the concepts of epicycle and deferent to explain the planetary motions. He was courageous and smart enough to replace the Earth with the Sun and thus open a new era in the history of human thought. Nonetheless, he preserved the geometrical/mathematical tools used by Ptolemy, since he still viewed celestial motions as circular rather than elliptical and so still required the equant to describe elliptical motions. The three Keplerian laws of planetary motions involving elliptical orbits (around 1610) and Newton’s universal theory of gravitation (Principia 1687) were not yet discovered. Copernicus knew of the results by Muslim scholars, and cites Battâni as well as the Andalusians Zarqâli and Ibn Rushd. He made use of the Tusi couple in his models in De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). There is growing consensus that Copernicus, living some three centuries after Tusi, became aware of Tusi’s result in some way, probably through Byzantine intermediaries, although an exact chain of transmission has not yet been identified. In brief, Copernicus put an end to a long period in the Middle Ages in which Muslim astronomers prevailed. Once the human thought was freed from the shackles of geocentric model, unprecedented discoveries and revolutions occurred owing to great scientific figures like Kepler, Galileo, Newton, and others. Copernicus closed a parenthesis between the Golden Greek/Roman epoch and the Renaissance. Europe started to excel in other fields than art and architecture.
The Alfonsine Tables created by Toledan astronomers in the 13th century were the last major astronomical work by Spanish astronomers before the Renaissance. After the fall of the Almohad dynasty (1121–1269), the Muslim Spain was reduced to the Nasrid kingdom of Grenada (1232-1492). In spite of Alfonso X’s policy to attract Muslim scholars, they preferred to settle in Grenada or emigrate to North Africa or the Middle East. The Christian Spain gradually established itself as a European power. The discovery of America under Spanish patronage was also a serious strike on Ptolemy’s worldview, since his Geographia ignored the new continent. The discovery proved Ptolemy wrong as far as the form and contents of the terrestrial surface were concerned, and this likewise had repercussions for his celestial ideas. Further, the discovery boosted navigation and the need for exact time determinations at different longitudes. More generally, it opened a new world with a wealth of plants, animals, commodities, and peoples previously unknown to Europeans.
Another parallel which can be drawn between Persia and Andalusia is of linguistic nature. In the wind of the Renaissance “national” languages started to step out of the occultation by the lingua franca. In particular, the creation of a standardized Spanish language based on the Castilian dialect began in the 13th century with King Alfonso X, who encouraged scholars to write original works in Castilian and translate histories, chronicles, scientific, legal, administrative, and literary works from other languages (principally Latin, Greek, and Arabic). This was a tremendous job since Castilian had never been used previously for writing on technical matters in particular astronomy. The Alfonsine scholars had to exert much effort to build a new specialized language and create the necessary terminology. As for Persian, although it had resisted Arabic and had created immense literary masterpieces like Shâh-nâmeh by Ferdowsi (935-1020) as well as scientific and philosophical works by scholars like Ibn Sinâ (Avicenna, c. 980-1037) and Biruni, the 13th century witnessed a kind of surge in producing science and philosophy in Persian. This was mainly encouraged by the above-mentioned astronomer/mathematician/politician Tusi, who himself wrote several works in Persian: Zij-e Ilkhâni (based on observations at the Marâgha Observatory), an astronomical treatise entitled Moiniyyé, and a work on ethics, Akhlâq-e Nâseri. He even found time to translate into Persian the Book of Fixed Stars, by the Persian astronomer Abd ar-Rahmân Sufi (903-986), originally written in Arabic.

References

Bagheri, M. 1998, The Persian Version of Zij-i Jâmi’ by Kušyâr Gilâni, in « La Science dans le Monde Iranien à
l’Epoque Islamique », Institut Français de Recherche en Iran, Téhéran
Breggren, L. 1997, Islamic Astronomers and the Equant, JHA, xxviii, 270
Calvo, E. 2005, Science in al-Andalus in the Lifetime of Khayyâm, Farhang (Institute for Humanities and
Cultural Studies, Tehran), Vol. 18, No 53-54, p. 329
Chabás, J.; Goldstein, B.R. 2000, Astronomy in the Iberian Peninsula: Abraham Zacut and the Transition from
Manuscript to Print, American Philosophical Society
Chabás, J.; Goldstein, B.R. 2003, The Alfonsine Tables of Toledo, Kluwer, Dordrecht
Copernic, N. Des révolutions des orbes célestes, traduction by Alexandre Koyré, 1998, Diderot Editeur
Dictionary of Scientific Biographies [DSB]. 1978, New York
Gingerich, O. 1986, Islamic Astronomy, Scientific American, 256, 74
Gingerich, O. 2002, An Annotated Census of Copernicus’ De Revolutionibus (Nuremberg, 1543 and Basel,
1566), Brille
Hartner, W. 1977, The Role of Observations in Ancient and Medieval Astronomy, JHA, viii, p. 1
Heydari-Malayeri, M., The Iranian Calendar, http://aramis.obspm.fr/~heydari/divers/calendar.html
Hugonnard-Roche, H. 1997, Influence de l’astronomie arabe en Occident médiéval, in Rashed 1997, p. 309
Kennedy, E.S. 1994, Tusi’s Cosmology, JHA, xxv, p. 321
King, D.A. 1987, Ninth-Century Islamic Astronomy, JHA, xviii, p. 284
Kremer, R.L. 2007, “Abbreviating” the Alfonsine Tables in Cracow, JHA, xxxviii, p. 283
Kokowski, M. 2004, Copernicus’s Originality: Towards Integration of Contemporary Copernican Studies,
Polish Academy of Sciences, Warsaw
Morelon, R. (Edited and translated by). 1987, Thâbit ibn Qurra: OEuvres d’Astronomie, Les Belles Lettres, Paris

Neugebauer, O. 1957, The Exact Sciences in Antiquity, Dover Publications, Inc., New York
Pedersen, F. 2002, The Toledan Tables (A review of the manuscripts and textual versions with an edition), Royal
Danish Academy of Sciences and Letters
Ragep, F.J. 1992, Thâbit’s Astronomical Works, JHA, xxiii, p. 61
Ragep, F.J. 1993, Nasir al-Din al-Tusi’s Memoir on Astronomy, Springer Verlag New York (in two volumes)
Rashed, R. (sous la direction de). 1997, Histoire des sciences arabes, 1. Astronomie, théorie et appliquée.
Editions du Seuil, Paris
Rashed, R.; Vahabzadeh, B. 1999, Al-Khayyâm mathématicien, Librairie Scientifique et Technique Albert
Blanchard, Paris
Rosenfeld, B. 1974, Biruni, JHA, v, p. 134
Saliba, G. 1987, Theory and Observation in Islamic Astronomy: The Work of Ibn al-Shâter of Damascus, JHA,
xiii, p.35
Saliba, G. 1985, Solar Observations at the Maraghah Observatory before 1275: A New Set of Parameters, JHA,
xvi, p.113
Saliba, G. 1994, A Sixteenth-Century Arabic Critique of Ptolemaic Astronomy: The Work of Shams al-Din al-
Khafri, JHA, xxxv, p. 15
Saliba, G. 1997, Les théories planétaires en astronomie arabe après le XIe siècle, in Rashed 1997, p. 71
Sigismondi,, C.; Fraschetti, F. 2001, Measurement of the Solar Diameter in Kepler’s Time, The Observatory
121, 380
Stephenson, F.R.; Said, D.D. 1991, Precision of Medieval Islamic Eclipse Measurements, JHA, xxii, p. 197
Thurston, H. 1994, Early Astronomy, Springer Verlag
Veselovsky, I.N. 1973, Copernicus and Nasir al-Din al-Tusi, JHA, iv, p. 128
Vernet, J.; Samsó, J. 1997, Les développements de la science arabe en Andalousie, in Rashed 1997, p. 271



ما شیفته بودیم

در ایران که زندگی می کردم حال و هوایی داشتم، حال و هوایی که تنها در من نبود، بلکه در بسیاری از جوانان هم سن من هم دیده می شد و الان که سالها از آن روزها میگذرد هنوز هم در نسل بعدی جوان های ایرانی دیده میشود و خودش را به شکل های مختلف آشکار می کند. 
ما شیفته بودیم. شیفته جهان پیشرفته، شیفته چیزهای تازه که رنگ و بوی برتری و بهتری از آنها می آمد. ما شیفته دانستن چیزهای نو بودیم و شیفته توانایی های نو، و شیفته فنآوری های برتر. و حق هم داشتیم، ما خودمان را متعلق به آینده می دانستیم.
و این آینده داشت با شتاب می آمد و ما نمی خواستیم جا بمانیم. 
این آینده از کجا می آمد؟ پاسخ این پرسش بسیار آسان بود، آنچنان آسان و آشکار و روشن که پرسیدنش احمقانه بود. تمام کتابهایی که می خواندیم از روی کتاب های انگلیسی ترجمه شده بودند، تمام فیلم هایی که می دیدیم و از آنها لذت می بردیم ، فیلم های آمریکایی بودند، همه چیز دور و بر ما که پیچیده و جادویی بود و کارها را آسان میکرد و کارها را راه می انداخت و نیازها را برطرف می کرد از جهان آمریکایی و اروپایی آمده بود. همه این پیشرفت هایی که ما می دیدیم، می شنیدیم و ازآن بهره مند می شدیم از جهان انگلیسی ، آلمانی و آمریکایی می آمد و آمده بود.
دیگر نیازی نیست که بپرسی یا بیاندیشی یا از ریشه و علت و سرچشمه پرسان شوی. جهان غرب جایی بود که نو آفرینی و نو سازی و نو اندیشی می کرد که

هین سخن تازه بگو تا دو جهان تازه شود

و ایرانی ها سخن تازه نمی گفتند وسیله تازه نمی ساختند و راه تازه ای را در پیش نمی گرفتند. افراد دور و بر ما، تازه برگشته بودند به گذشته تازه می خواستند سر در بیاورند که کارهایی که هزارسال پیش انجام می دادند چطور باید امروز هم انجام بدهند.
این کهنه گرایی بود که خفه مان می کرد. ما جوان بودیم و جوان متعلق به اینده است و آینده از آن کسانی است که نوآورند و ایران ما نوآور نبود. تازه داشت درجا میزد. 

و چون آینده داشت به شتاب در غرب ساخته میشد، همه ما تصمیم گرفتیم که ایران جای ماندن نیست و هرکس که توان رفتن داشت رفت و آنکه نداشت حسرت خورد.

آیا چیزی دگرگون شده؟ آیا تفاوتی میان ایران کنونی و ایران  ده  سال پیش هست؟ میان ایران کنونی و ایران پانزده سال پیش چطور؟

یک بدبختی ما این هست که از بد روزگار به جای پیش رو ، دنباله رو شده ایم و یک بار که تصمیم گرفتی دنباله رو بشوی ، همیشه دنباله رو خواهی بود چه ، آنکس که پیش رو هست ، چیزهایی را می بیند و می داند که تو هنوز نمی دانی و او از این دانش بهره می گیرد و همچنان پیشرو می ماند و تو همچنان تلاش میکنی مودبانه پاهایت ، جای پای غرب پیشرو بگذاری
ولی نه گامهایت به اندازه نیاز بلند هست و نه می توانی به تندی آنها قدم برداری آنها با درشکه می روند و تو پیاده

ولی بدبختی بزرگتر و مهین تر و سترگ تر و بالاتر و غمبارتر این هست که در این حرکت خطی و یک بعدی، دچار خشک شدگی گردن شده ایم، یعنی این که، نه به چپ می توانیم نگاه کنیم و نه به راست و نه به گذشته و نه به چشم انداز.
غرب کجا می رود؟ ما کجا می رویم؟ چرا می رویم؟ چه می خواهیم؟ شاید اگر مغزهایمان را بکار بیاندازیم شاید اگر از این شیفتگی خُل گونه و خُل مانند دست برداریم، بتوانیم مسیر غرب را ببینیم، شاید بتوانیم دریابیم که غرب در یک جاده پیچ در پیچ افتاده و زیرساختارهایش به گونه ای است که نمیتواند از مسیر دیگری برود ولی ما که آن زیرساختارها را نداریم ، دلیلی هم ندارد در این جاده پیچ در پیچ برویم می توانیم مستقیم برویم و به جایی که خودمان نیاز داریم برسیم.

ولی افسوس که این حرفها ، کفر است در پیش جوان شیفته امروز یا دیروز ، جوان شیفته ایرانی که خود من هم از همان زمره بودم، تصمیمش را گرفته و عزم را جزم کرده، ایران جای ماندن نیست ، باید پرید روی قطار پیشرفت ، باید آویزان شد به دستگیره واگن، و سوت کشان رفت به جایی که «آی پَد» می سازند. باید تا می توانی از واژه های انگلیسی به زبان بیاوری، تا حسابی «پیشرفته» شوی ، باید از گذشته بدگویی کرد و از شناختن آن خودداری، چرا که وقت تلف کردن است، در «دنیایی» که هر روز،  این همه «اختراع» به «ثبت» می رسانند، چه جای وقت تلف کردن است؟

جز این که، وقتی به آمریکا یا کانادا ، یا استرالیا ، یا آلمان یا فرانسه یا سوید یا اتریش آمدی ، می بینی که تو هم یک کارگر یا یک کارمند هستی مثل آنهای دیگر، تو هم مثل آنهای دیگر برای یک لقمه نان و یک مشت دلار ، یا یورو می دوی، هرچند که مشت هایت ، پُرتر هست ولی مغزت پُرتر نیست و اگر هست ، به خاطر در اینجا بودن نیست.

گفتم که ایران جای نوآوری به نظر نمی امد، ولی چرا؟ من که دلیلی نمی بینم، جز این کشش تبلیغاتی غرب و این «آرزو» و شیفتگی که در آنجا باشی، اگر میخواهی بدانی ، خوب بپرس، بخوان ، اگر می خوای بسازی ، بساز ، اگر میخواهی بیاندیشی ، بیاندیش ، اگر میخواهی نوآوری کنی، نوآوری کن! چه تفاوت دارد کجا هستی؟ فرقی می کند؟  در برخی کارها بله. کارهای ساختنی  ، نیاز به محیط دارد، نیاز به محیطی که دلگرم کند ، فراهم کند، هدف بدهد ، راه بدهد ، و بعد بهره بگیرد و سود بدهد
باید در ایران این محیط ها را ساخت، باید این سازمان ها را پرداخت، باید گفت، بگذار اندیشه کنیم، بگذار به نوسازی و نو گویی و نو آوری و نو پردازی و نو آفرینی و نو اندیشی روی آورد که
معمار حرم باز به تعمیر جهان خیز ، از خواب گران ، خواب گران ، خواب گران خیز، از خواب گران خیز

 برای انجام درست برخی کارها ، دستگاه های پیچیده تری نیاز هست ، پشتیبانی سازمانی می خواهد، همه چیز را نه می شود و نه باید ، از صفر آغاز کرد، اینجاست که مدیریت کلان جامعه باید در میدان بیاید و این فرصت را به جوان بدهد ، که بی واهمه از زیان و ضرر مالی ، چیزهای مختلف را امتحان کند و راهِ به سوددِهی رساندن را پیدا کند. اینجاست که می بینی همه چیز دلایل «اقتصادی» و «سیاسی» دارد و باز برمی گردیم به مدار بسته ، به در جا زدن، به افسوس خوردن ، و به دریوزگیِ  جهان شیفته ساز و غلط انداز غرب.
ولی من که باور دارم راه حل در اروپا و آمریکا و استرالیا و کانادا نیست ، راه حل در ایران هست.
و در این باره در گفتار دیگری داد سخن خواهیم داد.

در شهر کسی عرضه یک سوت ندارد ویران شود این شهر، دو من توت ندارد
هر کس که به هر خانه در آید بتمرگد این شهر تهی جز دل فرتوت ندارد
فریاد ز نیویورک و کَلی و فلوریدا اورلندو که آش رشته و شاتوت ندارد
نه غلغله تهران و نه مهمانی شیراز حتا خوشی یک شب بیروت ندارد
گفتم که در این گوشه زر و سیم نبخشند سوگند که این ناحیه یاقوت ندارد
پروانه نشو شمع دلم را خبری نیست این شعله ما طاقت یک فوت ندارد

اندر سودمندی های یکپارچه شدن ، پیوستگی و همبستگی

تاریخ و جغرافیای جهان نشان می دهد، کشورهای بزرگ و پرجمعیت یا دست بالا را دارند، یا توانایی این را که دست بالا را داشته باشند در خود دارند.

یکی از دلیل های این برتری ، به هم آوردن ، گنجینه های جغرافیایی و جلوگیری از ، رقابت ها و ستیزهای درون گروهی است.
جریان آزاد نیروی انسانی و سرمایه این پیامد را بدنبال دارد ، که سرمایه های کانی ، انسانی ، آبی ، زمینی می توانند کمبودهای یک دیگر را جبران کنند و کارهایی می شود انجام داد، کارستان ، اگر کمبود آب در یک نقطه با فراوانی آب در نقطه دیگر جبران شود و کمبود نیروی انسانی در یک نقطه با زیادی آن در نقطه دیگر برطرف شود همه سود می برند ،
نبود دسترسی به بندر در یک نقطه با موقعیت مناسب یک بخش دیگر جبران می شود، و نبود زمین هموار در یک نقطه با همواری زمین در بخش دیگر برطرف می شود وقتی قیمت یک کالا در یک بخش از یک سرزمین پهناور بالاست ، و در نقطه دیگر پایین ، یکپارچگی مملکت و نبود سدهای مالیاتی و گمرکی موجب می شود که یک بخش دیگر با داد و ستد این قیمت را پایین بیاورد و به روانی کارها بیانجامد.

در قرارداد های میان کشوری ، کشوری که بزرگ و پرجمعیت است ، می تواند از موقعیت برتر چانه زنی کند ، و میزان بزرگتری خریداری کند ، و به بهای کمتر و ارزانتر بخرد و به بهای بیشتر و گرانتری بفروشد یا امتیاز های بهتری بگیرد و امتیاز کمتری بدهد

، ولی هیچ کشوری بزرگ و پرجمعیت نیست ، مگر این که پیشینیان آن ها در یکپارچه کردن ، جامعه قومی و قبیله ای ، به کامیابی رسیده اند. 

اگر ایران اکنون نزدیک به یک میلیون و ششسَد و چهل و هشت هزار متر مربع مساحت دارد ، به این دلیل است که هخامنشیان، اشکانیان و ساسانیان با چنگ و دندان از یکپارچگی ایران دفاع کردند اما ایران آن ایران بزرگی که هخامنشیان و اشکانیان و ساسانیان می خواستند نیست، شکست نهایی ساسانیان در قادسیه، به جداشدن سرزمین های میان رودان تا رود فرات و ساحل مدیترانه از ایران شد و صفویان در آرزوی خود ناکام ماندند و شکست های پی در پی قاجار سرزمین ها بسیاری را از ایرانزمین و ایرانشهر جدا کرد

، اگر بجای سرزمین تکه تکه شده کنونی ، آذرآبادگان و فرارودان و میان رودان و هرات و سمرقند و بخارا و مرو و عشق آباد ، و سلیمانیه و هرات و بصره بغداد و دمشق همه بخشی از یک کشور بودند و همه مردمان این سرزمین ها با یک واحد پولی دادوستد می کردند و در داد وستد های فراکشوری خود به عنوان یک طرف و یک کشور به میدان می آمدند و در برابر دشمن خارجی با یک ارتش واحد به صف می ایستادند ، اگر امنیت کردها و تاجیک ها و آذری ها و  ارمنی ها و آسوری ها و هراتی ها امنیت ملی ایرانیان به شمار می امد، ضعف و ناتوانی از این کشورها رخت بر می بست و داد و ستد آزاد و بازرگانی رونق بیش از پیش می گرفت و فراوانی ها ، کمبود ها را از میان می برد و دانش یک بخش نادانی دیگران را در خود حل می کرد و مردم با هم و با رفع مشکل ها ی  همدیگر به سطح بالایی از شهرآیینی و همزیستی دست می یافتند.

یکپارچه کردن کشورها نیاز به این دارد که مردم از خواستهای قومی و قبیله ای چشم بپوشند تا به خواستهای بزرگتر و با ارزشتر برسند. خودخواهی ها و نازیدن به کشورهای تخیلی که پیشینه کهن ندارند باید به سود یک کشور بزرگ و ابرتوانمند که می تواند بزرگترین پشتوانه در فراز و نشیب های تاریخی باشد، فروکش کنند و نابود بشوند.

زبان گوناگون سد بزرگی نیست ، کشورهای دو زبانه یا چند زبانه کم نیستند، و همه در کنار هم به خوبی زندگی می کنند و زبان یکدیگر را می آموزند. هویت های قومی و زبان های محلی نیز می توانند در کنار هم به زندگی خود ادامه بدهند، هر کسی می تواند یک هویت محلی و قومی داشته باشد و یک هویت فرا قومی و میهنی، همانطور که یونانی اروپایی، سویس اروپایی داریم  همانطور که ایرانی ترک زبان ، عرب ایرانی داریم می توانی ایرانی افغان و تاجیک یا ترکمن ایرانی داشته باشیم.

تنها کار فرهنگی و همت بالا می خواهد. باید باور کنیم که می توانیم

چرا داشتن انتخابات و مردم سالاری به تنهایی نمی تواند یک کشور را به پیشرفت برساند

آیا حاکمیت مردم بر مردم مشکل گشای تمامی مشکلات است ؟ مثال هایی که در آن ها مردم سالاری مشکلی از کسی حل نکرده بسیار است (هند، پاکستان، مکزیک … ) ، نمونه هایی هم هست که با وجود دیکتاتوری کشور به پیشرفت اقتصادی بزرگ رسیده است (کره جنوبی ، چین ، ژاپن پیش از جنگ جهانی دوم… ) شکی نیست که در بعضی شرایط مردم سالاری یک تکه از حل معما هست ولی آشکار هست که نه عامل ریشه ای هست و نه سرنوشت ساز.  در شرایطی دیگر البته تمام کشورهای اروپایی و آمریکا پیشرفت اقتصادی خودرا وامدار پیشرفت سیاسی خود می دانند. براستی حقیقت چیست؟  آیا پیشرفت سیاسی موجب پیشرفت اقتصادی شده ؟ یا اینکه پیشرفت اقتصادی از راه های دیگر بدست آمده و پیشرفت سیاسی از دنبال آن پیدا شده؟

پیشرفت اقتصادی زمانی حاصل می شود که مردم یک کشور بتوانند نیازهای اقتصادی خود را برآورده کند و این نیازمند برنامه ریزی درست و مدیریت هوشمندانه و خردمندانه افراد، ذخیره ها و سرچشمه هاست. تصور کنید مردم یک کشور همه بر سر گزینش یک فرد یا یک گروه به توافق برسند و سکان ناوبری کشور خود را به او یا به آنها دهند. تصور کنید که مردم آن کشور در گزینش شایسته ترین افراد دچار اشتباه بزرگی شوند و افراد برگزیده از بدترین و ناشایست ترین افراد باشند. آیا تنها به این دلیل که مردم آن ها را برگزیده اند، وضع اقتصادی کشور به بهبودی و رشد خواهد رسید؟

حتا بنیانگذاران آمریکا هم در نوشته های خود، یاد کرده اند ، که برای آنکه مردم سالاری ، به پیشرفت و بهبود کشور برسد، وجود مردمی آموزش یافته ضروری است.

اگر دانش بسنده و کافی در یک کشور نیست، چنانچه مردم آن کشور به این نقص پی ببرند، و از میان آن ها یا از جای دیگر کسی پیدا شود که بدون چشمداشتِ تسلط و بهره جویی از ضعف آن مردم ، مدتی کشور را مدیریت کند، تا سطح دانش های عمومی بالا رود، شاید یک حکومت بدون مردم سالاری ولی با داشتن امکان گذار به مردم سالاری ، بهترین گزینه باشد.

بدبختانه یافتن کسانی که قدرت بدون حد و مرز یک فرمانروا را برای سود خود و خانواده خود به کار نگیریند و به آبادانی کشور همت گذارند بسیار دشوار است ولی در جاهایی که این مهم به واقعیت پیوسته (بیشتر کشورهای آسیای جنوب خاوری) پیامدهای معجزه آسایی داشته است.

یکی از مشکلات در این امر این هست که تا زمانی که تلاشی به موفقیت نرسیده ، بسیار دشوار هست که پیش بینی کنیم که آیا راهی که کشور در آن راه قرار دارد راه درستی است یا نه. در این زمان هست که هر کسی و هر گروهی ، نظر خودش را ابراز خواهد داشت و عرصه بر کارگذاران در صحنه تنگ خواهد شد. مهم تر این که هر نوع تلاشی از این نوع سالها طول خواهد کشید تا اثر خود را بگذارد و درازای زمان می تواند به شکست تعبیر شود و مردم را وادارد ، راه را نیمه رفته رها کنند.

مشکل دیگر این هست که توسعه اقتصادی می تواند پیامدهای منفی چون ، اختلاف طبقاتی و آلودگی محیط زیست و در بعضی موارد ، بالا رفتن بدهکاری ملی یک کشور هم بشود. آیا مردم یک کشور نمونه حاظر هستند ، توسعه اقتصادی را با این پیامدهای منفی دنبال کنند؟ یا به محض این که این پدیده ها آشکار شد، موج ناآرامی کشور را فراخواهد گرفت؟

این ها همه عواملی هستند که باید در نظر گرفته شوند، هدف از نوشتن این مقاله تنها این هست که خاطرنشان کنیم ، مردم سالاری نه شرط لازم برای توسعه اقتصادی است و نه شرط کافی و عوامل بیشمار دیگر نیز باید در نظر گرفته شود.

Link

نامه ی رستم فرخزاد به برادر (از شاهنامه) ؛

Tags

نامه ی رستم فرخزاد به برادر (از شاهنامه) ؛

بیاورد صلاب واختر گرفت|ز روز بلا دست بر سر گرفت
یکی نامه سوی برادر به درد| نوشت و سخنها همه یاد کرد
نخست آفرین کرد بر کردگار| کزویست نیک و بد روزگار
دگر گفت کز گردش آسمان|پژوهنده مردم شود بد گمان
گنهکارتر در زمانه منم|ازیرا گرفتار اهریمنم
که این خانه از پادشاهی تهی است|نه هنگام پیروزی وفرهی است
ز چارم همی بنگرد آفتاب|کز این جنگ ما را بد آید شتاب
ز بهرام و زهره است ما را گزند|نشاید گذشتن ز چرخ بلند
همان تیرو کیوان برابر شدست|عطارد به برج دو پیکر شدست
چنین است وکاری بزرگ است پیش|همی سیر گردد دل از جان خویش
همه بودنیها ببینم همی|وزان خامشی برگزینم همی
به ایرانیان زار وگریان شدم|ز ساسانیان نیز بریان شدم
دریغ آن سر و تاج و اورنگ و تخت|دریغ آن بزرگی و آن فر و بخت
کزین پس شکست آید از تازیان|ستاره نگردد مگر بر زیان
بدین سالیان چارصد بگذرد|کزین تخمه گیتی کسی نشمرد
از ایشان فرستاده آمد به من|سخن رفت هر گونه بر انجمن
که از قادسی تا لب رود بار|زمین را ببخشیم با شهریار
وز آن سو یکی برگشاییم راه|به شهری کجا هست بازار گاه
بدان تا خریم وفروشیم چیز|از این پس فزونی نجوییم نیز
پذیریم ما ساو و باژ گران| نجوییم دیهیم گند آوران
شهنشاه را نیز فرمان بریم|گر از ما بخواهد گروگان بریم
چنین است گفتار وکردار نیست|جز از گردش کژ پرگار نیست
برین نیز جنگی بود هر زمان|که کشته شود صد هژبر دمان
بزرگان که با من به جنگ اندرند| به گفتار ایشان همی ننگرند
چو میروی طبری وچون ارمنی|به جنگ اند با کیش آهرمنی
چو کلبوی سوری و این مهتران|که گوپال دارند وگرز گران
همی سرفرازان کایشان کیند|به ایران و مازندران بر چیند
اگر مرز وراه است اگر نیک وبد|به گرز و به شمشیر باید ستد
بکوشیم و مردی به کار آوریم|بر ایشان جهان تنگ و تار آوریم
نداند کسی راز گردان سپهر|دگر گونه گشته است با ما به چهر
چو نامه بخوانی خرد را مران| بپرداز و برساز با مهتران
همه گرد کن خواسته هرچه هست|پرستنده و جامه های نشست
همی تاز تا آذر آبادگان|به جای بزرگان و آزادگان
همیدون گله هر چه داری ز اسپ|ببر سوی گنجور آذر گشسب
ز زابلستان گر ز ایران سپاه| هر آنکس که آیند زنهار خواه
بدار وبپوش وبیارای مهر|نگه کن بدین کار گردان سپهر
ازو شادمانی وزو در نهیب| زمانی فرازست و روزی نشیب
سخن هرچه گفتم به مادر بگوی نبیند همانا مرا نیز روی
گر از من بد آگاهی آرد کسی|مباش اندرین کار غمگین بسی
چنان دان که اندر سرای سپنج|کسی کو نهد گنج با دست رنج
چو گاه آیدش زین جهان بگذرد|از آن رنج او دیگری بر خورد
همیشه به یزدان پرستان گرای|بپرداز دل زین سپنجی سرای
که آمد به تنگ اندرون روزگار| نبیند مرا زین سپس شهریار
تو با هر که از دوده ی ما بود|اگر پیر اگر مرد برنا بود
همه پیش یزدان نیایش کنید|شب تیره او را ستایش کنید
بکوشید و بخشنده باشید نیز|ز خوردن به فردا ممانید چیز
که من با سپاهی به سختی درم|به رنج و غم و شور بختی درم
رهایی نیابم سرانجام از این|خوشا باد نوشین ایران زمین
چو گیتی شود تنگ بر شهریار|تو گنج و تن و جان گرامی مدار
کزین تخمه ی نامدار ارجمند| نماندست جز شهریار بلند
زکوشش مکن هیچ سستی به کار|بگیتی جز او نیستمان یادگار
ز ساسانیان یادگار است و بس|کز این پس نبیند از این تخمه کس
دریغ این سر و تاج و این مهر و داد|که خواهد شد این تخت شاهی به باد
تو بدرود باش و بی آزار باش|ز بهر تن شه به تیمار باش
گر او را بد آید تو سر پیش اوی|به شمشیر می دار و یاوه مگوی
چو با تخت منبر برابر کنند| همه نام بوبکر و عمر کنند
تبه گردد این رنج های دراز| نشیبی دراز است پیش فراز
نه تخت و نه دیهیم بینی نه شهر|ز اختر همه تازیان راست بهر
چو زور اندر آید به روز دراز| شود ناسزا شاه گردن فراز
بپوشند از ایشان گروهی سیاه|ز دیبا گذارند بر سر کلاه
نه تخت و نه تاج و نه زرینه کفش|نه گوهر نه افسر نه بر سر درفش
برنجد یکی دیگری برخورد|به داد و به بخشش همی ننگرد
شب آید یکی چشمه رخشان کند|نهفته کسی را خروشان کند
ستاننده ی روزشان دیگر است|کمر بر میان و کله بر سر است
ز پیمان بگردند و از راستی|گرامی شود کژی و کاستی
پیاده شود مردم جنگ جوی|سوار آن که لاف آرد و گفت و گوی
کشاورز جنگی شود بی هنر|نژاد و هنر کمتر آید به بر
رباید همی این از آن،آن از این|ز نفرین ندانند باز آفرین
نهان بدتر از آشکارا شود|دل مردمان سنگ خارا شود
بداندیش گردد پدر بر پسر|پدر بر پسر هم چنین چاره گر
شود بنده ی بی هنر شهریار|نژاد و بزرگی نیاید به کار
به گیتی کسی را نماند وفا|روان و زبانها شود پر جفا
از ایران و از ترک و از تازیان|نژادی پدید آید اندر میان
نه دهقان نه ترک و نه تازی بود|سخن ها به کردار بازی بود
همه گنج ها زیر دامن نهند| بمیرند و کوشش به دشمن نهند
بود دانشومند و زاهد بنام|بکوشد از این تا که آید به کام
چنان فاش گردد غم و رنج وشور|که شادی به هنگام بهرام گور
پدر با پسر کین سیم آورد|خورش کشک و پوشش گلیم آورد
زیان کسان از پی سود خویش|بجویند و دین اندر آرند پیش
نباشد بهار و زمستان پدید|نیارند هنگام رامش نبید
چو بسیار از این داستان بگذرد|کسی سوی آزادگی ننگرد
بریزند خون از پی خواسته|شود روزگار مهان کاسته
دل من پر از خون شد و روی زرد|دهن خشک و لب ها شده لاژورد
که تا من شدم پهلوان از میان|چنین تیره شد بخت ساسانیان
چنین بی وفا گشت گردان سپهر|دژم گشت و از ما ببرید مهر
اگر تیر بر کوه آهن زنم|گذاره کنم زان که رویین تنم
کنون تیز پیکان آهن گذار|همی بر برهنه نیاید به کار
همان تیغ کان گردن پیل و شیر| فکندی به زخم اندر آورد زیر
نبرد همی پوست بر تازیان| ز دانش زیان آمدم بر زیان
مرا کاشکی این خرد نیستی|گر اندیشه نیک و بد نیستی
بزرگان که در قادسی با منند|درشتند و بر تازیان دشمنند
گمانند کاین بیشه پر خون شود|ز دشمن زمین رود جیهون شود
ز راز سپهری کس آگاه نیست |ندانند کاین رنج کوتاه نیست
چو بر تخمه ای بگ ذرد روزگار|چه سود آید از رنج و از کارزار
ترا ای برادر تن آباد باد|دل شاه ایران به تو شاد باد
که این قادسی گور گاه منس ت|کفن جوشن و خون کلاه منس ت
چنین است راز سپهر بلند| تو دل را به درد من اندر مبند
دو دیده ز شاه جهان بر مدار|فدا کن تن خویش در کارزار
که زود آید این روز اهریمنی|چو گردون گردان کند دشمنی
که اين نامه نزد برادر برد|بگويد جزين هر چه اندر خورد